
Fast Instruction Selection for
Fast Digital Signal Processing

Alexander J. Root
Stanford University
Stanford, CA, USA
ajroot@stanford.edu

Maaz Bin Safeer Ahmad
Adobe

Seattle, WA, USA
mahmad@adobe.com

Dillon Sharlet
Independent Researcher

Irvine, CA, USA
dsharlet@gmail.com

Andrew Adams
Adobe

San Francisco, CA, USA
anadams@adobe.com

Shoaib Kamil
Adobe

New York City, NY, USA
kamil@adobe.com

Jonathan Ragan-Kelley
Massachusetts Institute of Technology

Cambridge, MA, USA
jrk@mit.edu

ABSTRACT

Modern vector processors support a wide variety of instructions
for fixed-point digital signal processing. These instructions sup-
port a proliferation of rounding, saturating, and type conversion
modes, and are often fused combinations of more primitive op-
erations. While these are common idioms in fixed-point signal
processing, it is difficult to use these operations in portable code.
It is challenging for programmers to write down portable integer
arithmetic in a C-like language that corresponds exactly to one
of these instructions, and even more challenging for compilers to
recognize when these instructions can be used. Our system, Pitch-
fork, defines a portable fixed-point intermediate representation,
FPIR, that captures common idioms in fixed-point code. FPIR can
be used directly by programmers experienced with fixed-point, or
Pitchfork can automatically lift from integer operations into FPIR
using a term-rewriting system (TRS) composed of verified man-
ual and automatically-synthesized rules. Pitchfork then lowers
from FPIR into target-specific fixed-point instructions using a set
of target-specific TRSs. We show that this approach improves run-
time performance of portably-written fixed-point signal processing
code in Halide, across a range of benchmarks, by geomean 1.31×
on x86 with AVX2, 1.82× on ARM Neon, and 2.44× on Hexagon
HVX compared to a standard LLVM-based compiler flow, while
maintaining or improving existing compile times.

ACM Reference Format:

Alexander J. Root, Maaz Bin Safeer Ahmad, Dillon Sharlet, Andrew Adams,
Shoaib Kamil, and Jonathan Ragan-Kelley. 2023. Fast Instruction Selection
for Fast Digital Signal Processing . In 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
Volume 4 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3623278.3624768

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0394-2/23/03.
https://doi.org/10.1145/3623278.3624768

1 INTRODUCTION

Fixed-point computation is ubiquitous in high-performance digital
signal processing (DSP) workloads, such as production camera
systems [1, 21], machine learning kernels [15, 46], and recently in
numerical simulations [22]. It offers a variety of advantages over
floating point, including more efficient hardware and a uniform
distribution of representable values.

Fixed-point computation is fundamentally different to the primi-
tive integer arithmetic offered by most language front-ends. Most
fixed-point operations increase precision, so the programmer must
decide whether to drop the extra bits (potentially with rounding),
promote to a wider type, use saturation, or simply wrap. All choices
have their place, and expressing them with portable integer arith-
metic is difficult and error-prone.

Dating back to at least Intel’s MMX [36], processors have sup-
ported coarse-grained fixed-point instructions that implement these
idioms. Modern ISAs such as ARM Neon [29], x86 AVX2 [23], and
HexagonHVX [14] provide a rich set of fixed-point instructions that
support various rounding, saturating, and type-conversion modes,
as well as fusion of multiple operations into a single instruction.
These are implemented as vector instructions, as the applications
are data-parallel.

Compilers that use pattern matching struggle to exploit these
coarse-grained instructions due to their complex semantics: using
primitive integer arithmetic, simple fixed-point idioms explode into
large compositions of operations. State-of-the-art compilers such
as LLVM [26] are unable to reliably pattern-match these large se-
quences of primitive integer operations back to the coarse-grained
fixed-point instructions available in modern CPUs and DSPs. As
a result, these systems leave significant performance on the ta-
ble: failing to optimally map to fixed-point instructions increases
critical path instruction count. Even worse, primitive integer im-
plementations of fixed-point idioms often require high-bit-width
intermediate values, which halves SIMD throughput, and can even
require expensive emulation for types wider than what the hard-
ware supports (see §5.1).

A core problem is the significant impedance mismatch between
fixed-point and primitive integer arithmetic. Programmers writing
portable fixed-point code must use primitive integer arithmetic
to express their intent, which the compiler must then attempt to
match back to fixed-point computation in order to properly target
the fixed-point instructions that modern ISAs offer. Additionally,

https://orcid.org/0000-0001-6221-1389
https://orcid.org/0000-0002-8113-7580
https://orcid.org/0000-0002-7118-7576
https://orcid.org/0000-0002-6766-670X
https://orcid.org/0000-0001-5965-3717
https://orcid.org/0000-0001-6243-9543
https://doi.org/10.1145/3623278.3624768
https://doi.org/10.1145/3623278.3624768


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Root et al.

Fixed-Point
Vector 

Expression

Fixed-Point
Vector 

Expression

Online

Fixed-Point
Vector 

Expression

Halide IR

Lifting TRS

Offline

Lifting
Synthesizer

Rule 
Verifier

Lowering
Synthesizer

x86 TRS

ARM TRS

HVX TRS

Fixed-Point
Vector 

Expression

Fixed-Point
Vector 

Expression

Lifted 
Vector

Expression

FPIR
Fixed-Point

Vector 
Expression

Fixed-Point
Vector 

Expression

Device 
Specific 

Expression

LLVM Intrins

Expressions 
Dataset

Figure 1: Pitchfork System Architecture. At compile time,

Pitchfork performs instruction selection via a two-phased

lift-then-lower algorithm. Offline, Pitchfork leverages for-

mal verification to establish the correctness of hand-written

rules and program synthesis to infer missing translation

rules.

there is a combinatorial explosion of effort required by compiler
engineers to redundantly develop numerous complex patterns for
backends that offer substantially-similar fixed-point instructions.

The limitations of existing rule-based systemsmotivate synthesis-
based approaches to instruction selection, where an automated sys-
tem performs more complex semantic reasoning than a rule-based
system typically can. Rake [4] is one such system that uses pro-
gram synthesis to target modern fixed-point instruction sets. While
synthesis-based approaches are able to effectively bridge the gap
between source code and hardware instructions, they increase com-
pile times by multiple orders of magnitude, and are thus unsuitable
for most real-world use-cases.

The inability of rule-based compilers to effectively exploit fixed-
point instruction sets combined with prohibitively long compile
times of synthesis-based solution forces developers to write per-
formance-sensitive code directly using low-level hardware instruc-
tions.We see this inmachine learning libraries such as XNNPACK [18]
and production image processing systems such as libjpeg-turbo [28]
and Adobe Photoshop [3]. Writing assembly allows programmers
to directly express fixed-point computation, but produces non-
portable code that requires significant and ongoing developer effort
for each new hardware generation supported.

We aim to solve each of these limitations with our system, Pitch-
fork, an instruction selector for digital signal processing. Pitch-
fork’s design is centered around a fixed-point intermediate repre-
sentation, FPIR. Unlike existing rule-based compilers that attempt to
directly translate primitive integer arithmetic into fixed-point hard-
ware instructions, Pitchfork uses a two-stage procedure where the
computation is first lifted to FPIR before being lowered to hardware
instructions. This design removes a combinatorial factor of rules
from compilers, as each backend can share the lifting translation
phase. The lowering systems from FPIR to target ISAs are also easier
to develop: each backend is responsible only for compiling fixed-
point computation to a fixed-point ISA. Both the target-agnostic
lifting and the target-specific lowering systems are implemented as
simple rule-based term-rewriting systems.

Unlike synthesis-based instruction selectors that use online syn-
thesis to translate expressions into instructions, we take inspiration
from prior work [10, 27, 38] and use offline program synthesis to
strengthen Pitchfork’s lifting and lowering systems. By learning
rewrite rules from real-world expressions using expensive offline
program synthesis, Pitchfork is able to perform powerful semantic
reasoning cheaply at compile time.

Lastly, Pitchfork caters to domain experts by allowing them
to implement their algorithms directly using FPIR’s fixed-point
instructions, bypassing Pitchfork’s lifting phase. This enables
experts to write portable high-performance code using the familiar
idioms of fixed-point computation.

In summary, our contributions are:

• A domain-specific intermediate representation, FPIR, for fixed-
point signal processing that unifies classes of instructions
across multiple different ISAs.

• An instruction-selection system, Pitchfork, that lifts integer
code into FPIR before lowering it into target-specific instruc-
tions using fast term-rewriting systems partially synthesized
from a corpus of real-world fixed-point expressions.

• A prototype of Pitchfork that achieves state-of-the-art per-
formance on three popular fixed-point instruction sets: ARM
Neon, Hexagon HVX, and x86 AVX2.

We evaluate our approach using LLVM and Rake as baselines.
Our results show that Pitchfork achieves a geometric mean speed
up over LLVM alone of 1.31× on x86 AVX2 (max 3.40×), 1.82×
on ARM Neon (max 8.33×), and 2.44× on Hexagon HVX (max
5.76×), while coming within 2% of the performance of Rake [4]
on ARM Neon and 13% on Hexagon HVX. Additionally, we show
that Pitchfork’s compile times are comparable to or out-perform
LLVM on all benchmarks, and are at least three orders of magnitude
faster than Rake.

2 OVERVIEW

This section provides an overview of Pitchfork’s instruction selec-
tion algorithm, illustrated in Figure 1, using an example to illustrate
the process.

The prototype of Pitchfork is implemented with the Halide [42]
compiler, a popular domain-specific language for high-performance
image and array processing. Halide allows users to separately spec-
ify the algorithm, i.e. what they would like to compute, from the
schedule, i.e. how they would like to compute it. Halide compiles to
LLVM IR [26] for most of its CPU and DSP backends.

Pitchfork sits between Halide and LLVM, intercepting the
translation of fixed-point vector expressions from Halide IR into
LLVM IR. Pitchfork takes these fixed-point vector expressions
as input, which contain primitive integer arithmetic operations
such as addition, multiplication, and bit-shifts, as well as any user-
provided FPIR instructions. As output, Pitchfork generates opti-
mized target-specific implementations of the input expressions for
three of Halide’s supported DSP backends: x86 AVX2 (now referred
to as x86), 64-bit ARM Neon (ARM) and Hexagon HVX (HVX). The
output expressions use LLVM’s target-specific intrinsics, thereby
bypassing LLVM’s instruction selection process.



Fast Instruction Selection for Fast Digital Signal Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

2.1 Fixed-Point Considerations

The fixed-point representation is a digital encoding for approxi-
mating real numbers. In contrast to the more ubiquitous floating-
point representation, fixed-point arithmetic can be performed using
simpler and more efficient hardware. While floating-point offers
dynamic scaling, fixed-point does not, so a fixed-point programmer
has to explicitly reason about the magnitude of each number in a
calculation, often needing to widen the types of operands to avoid
overflow, or explicitly handle overflow with saturating operations.

For example, to add two values, a floating-point programmer
writes a + b, and generally does not worry about overflow in
DSP code. In contrast, the fixed-point programmer must handle a
statically-limited range of values, and so needs to bemore deliberate
about handling overflow when the operands are large. Suppose the
operands are stored as unsigned 8-bit fixed-point values. There
are multiple reasonable options for addition: the user could widen
the operands to represent the exact 9-bit sum, requiring a 16-bit
result type for most architectures via u16(x) + u16(y), or could
use saturating arithmetic to handle overflow and stay in 8 bits,
equivalent to u8(min(u16(x) + u16(y), 255)). Alternatively, if
the programmer knows bounds on the inputs that mean the sum
cannot overflow, they can use regular addition without widening or
saturation. Each of these options have their use cases, and are often
supported by DSP hardware: widening addition can be performed
via ARM’s uaddl instruction or HVX’s vaddubh, and saturating
addition is supported via ARM’s uqadd, HVX’s vadd:sat, and x86’s
vpaddusb.

Fixed-point considerations become more complicated when per-
forming computation that produces results which cannot be exactly
represented, such as division, square roots, and many other useful
arithmetic operations. Rounding must occur for these operations,
and different rounding modes are useful for different use cases. For
example, consider taking the average of two unsigned 8-bit fixed-
point values. The sum of the values might overflow, even though
the average fits in 8 bits. Moreover, should the average of 4 and 3 be
3 or 4? Using round-down averaging1, u8((u16(x) + u16(y)) »
1), produces 3, while round-up averaging2, u8((u16(x) + u16(y)
+ 1) » 1), produces 4. Both of these options (and others) have
perfectly valid places in various fixed-point algorithms, and need
to be reasoned about when writing fixed-point code.

In simple integer arithmetic, the examples above produce remark-
ably verbose code that is difficult to write and subject to a number
of compiler optimizations that might remove the original intent of
the programmer. Compiler passes can obfuscate the code before
reaching instruction selection, hindering the ability of instruction
selection to properly target fixed-point ISAs.

2.2 Motivating Example

The Sobel filter [40] is a popular algorithm for approximating spatial
gradients of images.

Figure 2a shows a fixed-point Sobel filter implemented in Halide.
For brevity, we omit the Halide schedules governing the optimiza-
tions performed for each backend. All three schedules inline the
entire computation and then vectorize it using vector-widths of 16,

1Implemented by ARM’s uhadd and HVX’s vavg.
2Implemented by ARM’s urhadd, x86’s vpavgb, and HVX’s vavg:rnd.

1 in_u16(x, y) = u16(input_u8(x, y));
2
3 x_kernel(x, y) = in_u16(x-1, y) + 2 * in_u16(x, y) +
4 in_u16(x+1, y);
5 sobel_x(x, y) = absd(x_kernel(x, y-1), x_kernel(x, y+1));
6
7 y_kernel(x, y) = in_u16(x, y-1) + 2 * in_u16(x, y) +
8 in_u16(x, y+1);
9 sobel_y(x, y) = absd(y_kernel(x-1, y), y_kernel(x+1, y));
10
11 output(x, y) = u8(min(sobel_x(x, y) + sobel_y(x, y), 255));

(a) The Sobel filter algorithm expressed in Halide. The schedules

(omitted for brevity) inline and vectorize the computation for all

three backends.

1 // Syntax guide:
2 // • u8(...) and u16(...) are vector casts to
3 // uint8 and uint16, respectively
4 // • x(c) broadcasts scalar c to a vector
5 // • variables are suffixed with their types,
6 // i.e. a_u8 is a vector of uint8s
7 // • min, +, and * are vector integer operations
8 // • absd (absolute difference) is an FPIR instruction
9 u8(
10 min(
11 absd(
12 u16(a_u8) + u16(b_u8) * x(2) + u16(c_u8),
13 u16(d_u8) + u16(e_u8) * x(2) + u16(f_u8)) +
14 absd(
15 u16(g_u8) + u16(h_u8) * x(2) + u16(i_u8),
16 u16(j_u8) + u16(k_u8) * x(2) + u16(l_u8)),
17 x(255)))

(b) The input to Pitchfork: A target-agnostic vector expression

generated by lowering the Sobel filter to Halide IR.

1 saturating_cast<u8>(
2 absd(
3 widening_add(a_u8, c_u8) + widening_shl(b_u8, x(1)),
4 widening_add(d_u8, f_u8) + widening_shl(e_u8, x(1))) +
5 absd(
6 widening_add(g_u8, i_u8) + widening_shl(h_u8, x(1)),
7 widening_add(j_u8, l_u8) + widening_shl(k_u8, x(1))))

(c) The vector expression in (b) lifted into our fixed-point intermedi-

ate representation (FPIR).

Figure 2: The Sobel filter benchmark. Pitchfork performs

instruction selection by lifting the lowered Halide IR ex-

pression into FPIR, before lowering the expression to taget-

specific LLVM intrinsics. For (b) and (c), vector lengths are

abstracted away as they vary across different backends.

32 and 128 for ARM, x86 and HVX respectively. Figure 2b shows the
resulting Halide IR generated by lowering the Sobel filter, which is
handed over to Pitchfork for instruction selection. Note that the
lowered expression consists of primitive vector operations, with the
exception of absd. The absd instruction implements the absolute-
difference operation and is part of our proposed IR for fixed point
arithmetic, discussed further in §2.3.

Compared to using LLVM [26] alone, Pitchfork recognizes
eight missed optimizations in the Sobel filter across Pitchfork’s
three backends. With these optimizations, Pitchfork achieves a
runtime speedup of 1.7× on ARM, 1.6× on x86, and 1.8× on HVX
over LLVM, while compiling the benchmark faster than LLVM for



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Root et al.

Expression ISA Pitchfork Codegen LLVM Codegen

(a) u16(a_u8) +
u16(b_u8) * 2 +
u16(c_u8)

ARM uaddl v3.8h, v0.8b, v2.8b
uaddl2 v4.8h, v0.16b, v2.16b
umlal v3.8h, v1.8b, 2
umlal2 v4.8h, v1.16b, 2

uaddl v3.8h, v0.8b, v2.8b
uaddl2 v4.8h, v0.16b, v2.16b
ushll v5.8h, v1.8b, 1
ushll2 v6.8h, v1.16b, 1
add v7.8h, v3.8h, v5.8h
add v8.8h, v4.8h, v6.8h

HVX vzxt v3.h, v0.ub
vmpa.acc v3.h, v1.ub, v2.ub, 2, 1

vzxt v3.h, v0.ub
vmpa v4.h, v1.ub, v2.ub, 2, 1
vadd v5.h, v4.h, v3.h

(b) // absd(x_u16, y_u16)
select(
a < b,
b - a,
a - b

)

x86 vpsubusw %ymm2, %ymm0, %ymm1
vpsubusw %ymm3, %ymm1, %ymm0
vpor %ymm4, %ymm2, %ymm3

vpminuw %ymm2, %ymm0, %ymm1
vpcmpeqw %ymm3, %ymm2, %ymm1
vpsubw %ymm4, %ymm0, %ymm1
vpsubw %ymm5, %ymm1, %ymm0
vpblendvb %ymm6, %ymm3, %ymm4, %ymm5

ARM uabd v0.8h, v0.8h, v1.8h cmhi v2.8h, v0.8h, v1.8h
sub v3.8h, v0.8h, v1.8h
sub v4.8h, v1.8h, v0.8h
bit v4.16b, v3.16b, v2.16b

HVX vabsdiff v2.uh v0.uh v1.uh vsub v2.h v0.h v1.h
vsub v3.h v1.h v0.h
vcmp.gt q0 v1.uh v0.uh
vmux v4 q0 v3 v2

(c) u8(min(z_u16, 255)) x86 vpackuswb %ymm2, %ymm0, %ymm1 vpminuw %ymm2, %ymm0, 255
vpminuw %ymm3, %ymm1, 255
vpackuswb %ymm4, %ymm2, %ymm3

ARM uqxtn v2.8b, v0.8h
uqxtn2 v2.16b, v1.8h

umin v2.8h, v0.8h, 255
umin v3.8h, v1.8h, 255
uzp1 v4.16b, v2.1b, v3.16b

HVX vsat v2.ub, v0.h, v1.h vmin v2.uh, v0.uh, 255
vmin v3.uh, v1.uh, 255
vshuffeb v4.ub, v2.uh, v3.uh

Figure 3: An illustration of the key differences between Pitchfork and LLVM’s instruction selection on the Sobel filter.

Pitchfork discovers eight optimizations resulting in runtime speed-ups of: 1.74× on ARM, 1.58× on x86, and 1.77× on HVX

over LLVM, while compiling faster than LLVM alone. All assembly is written in Intel syntax: instr dst, [operands].

all three targets. Furthermore, when compared against Rake [4], a
compiler that uses program synthesis to guide instruction selection,
Pitchfork delivers matching runtime performance on the Sobel
filter on ARM and only a 9% slow-down on HVX, while requiring
only 1/100,000th of Rake’s compilation time3.

Figure 3 illustrates instances where Pitchfork achieves better
instruction selection over LLVM alone on the Sobel filter. Expres-
sions (a) and (b) both showcase examples where LLVM’s instruction
selection rules fail to match the input code patterns. In (a) LLVM
converts the multiplication into a bit-shift, which in turn causes
the multiply-add pattern to not be triggered. Similarly, LLVM does
not have a rewrite rule that maps the implementation of absolute-
difference in (b) to the appropriate hardware instructions. Expres-
sion (c) is a more interesting optimization, as it relies on bounds
reasoning for both x86 and HVX backends. The saturating narrow
instructions (vpackuswb and vsat) generated by Pitchfork are
only correct if the uint16 input can be represented as an int16.
This requires predicated rules covering this edge-case use of these
instructions.

The inability of a mature state-of-the-art compiler, LLVM, to
match even basic fixed-point patterns illustrates the challenge of
building and maintaining large rule-based instruction selectors for

3Rake currently does not support x86 as a backend.

fixed-point computation. We believe that our two-phase system
makes that task tractable.

2.3 Instruction Selection in Pitchfork

Pitchfork’s contributions are centered on its language for fixed-
point computation, FPIR. FPIR is designed to interoperate with
primitive integer operations, as instruction sets provide both inte-
ger and fixed-point operations, and programmers write code in a
mixture of modes as well.

At compilation, Pitchfork lifts primitive integer arithmetic
inputs into FPIR via a target-agnostic lifting phase. We give an
example of the lifted representation in Figure 2c. Note that the u8
cast and the min are lifted to a single saturating_cast<u8> FPIR
instruction (saturating cast to uint8). The kernel is similarly lifted
to instructions using widening_add and widening_shl.

Lifting input expressions to FPIR presents three significant ad-
vantages. First, it acts as a normalization step, simplifying the sub-
sequent lowering of expressions to device-specific instructions.
Lowering from FPIR to instructions is easier, as the set of possible
input patterns that must be handled is smaller due to the higher-
level nature of FPIR. Second, operations like saturating cast and
absolute-difference are almost ubiquitous across fixed-point back-
ends. Lifting allows us to maintain a shared corpus of rewrite rules
relevant across different backends, avoiding redundancy that would



Fast Instruction Selection for Fast Digital Signal Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

be necessary in a direct-translation system. Lastly, as FPIR is target-
agnostic, domain experts who think in terms of these fixed-point
idioms can express their computation using FPIR instructions in
portable code. The Sobel example provides one such case, where
the input code contains the absd instruction.

Pitchfork’s lowering systems maps FPIR or fused combinations
of FPIR to target instructions. These systems are made simple by the
normalization of expressions in the lifting phase. Figure 3 provides
the instructions chosen for the three key components of the Sobel
algorithm, highlighting Pitchfork’s wins over LLVM alone.

Pitchfork’s lifting and lowering systems are implemented as
term-rewriting systems (TRSs), described in detail in §3. This design
enables offline synthesis to augment the hand-written TRSs, as in
prior work [27, 38].

2.4 Synthesizing Rewrite Rules

While Pitchfork’s two-stage compilation simplifies designing com-
pilers for fixed-point computation, manually designing lifting and
lowering rules remains challenging. Search-based instruction selec-
tors [4, 12] and super-optimizers [44] are able to explore a richer
space of optimizations, which can result in runtime performance
improvements at the cost of compile-time performance. Pitchfork
follows prior work on synthesizing rules offline [27, 38], which pre-
serves the comprehensiveness of search-based approaches while
avoiding their compile-time cost.

Pitchfork was initially designed with a manually-written set of
rewrite rules. We augmented this set with additional rules learned
from a corpus of sample expressions. Given this corpus, Pitchfork
first searches for optimal translations to FPIR from primitive integer
arithmetic and from FPIR to target instructions on specific expres-
sions, and then performs rule generalization to produce symbolic
rewrites from the input-output pairs. The automatically generated
rules are added to Pitchfork’s term-rewriting system to be used
during online compilation.

The synthesized rules significantly improve runtime perfor-
mance. When Sobel is compiled with Pitchfork’s synthesized
rules enabled, we see a 1.23× performance boost on ARM and a
1.10× performance boost on HVX. We describe Pitchfork’s rule
synthesis process in §4 and evaluate the impact of automatically
synthesizing rules on all benchmarks in §5.3.

Verifying Hand-Written Rules. Adesirable side-effect of synthesizing
new rewrite rules is that it provides us with the machinery to verify
existing hand-written rules. As synthesis requires the semantics of
Halide IR and FPIR, we were able to use these semantics to formally
verify Pitchfork’s entire lifting TRS. This exercise unearthed a
handful of subtle bugs that had escaped detection through testing
and code-reviews. Examples include missing predicates over the
range of constant values for which a rule is valid and a case where
the documented semantics of an operation did not match its actual
behavior. Verifying the semantics of the lowering TRS remains as
future work.

3 AN IR FOR FIXED-POINT ARITHMETIC

Computation in fixed-point signal processing is rife with idioms that
express a variety of common saturating, rounding, and widening
fixed-point behavior. Instruction sets designed for fixed-point signal

processing provide fused instructions that directly accelerate these
idioms. FPIR attempts to capture these idioms as target-agnostic
instructions that are both expressive enough to capture user intent
and simple to map to complex hardware instructions.

Table 1 lists the full set of fixed-point instructions that comprise
FPIR, as well as their semantics. Each FPIR instruction is defined as
a composition of primitive integer arithmetic operations and imple-
ments a pattern typically found in DSP hardware. For instance, the
FPIR instruction rounding_halving_add can be mapped to a sin-
gle hardware instruction on all three backends currently supported
by Pitchfork (vpavgb on x86, urhadd on ARM, and vavg:rnd on
HVX), and various other ISAs as well (vavgub on PowerPC, vaaddu
on RISC-V, etc.).

Although FPIR is designed specifically for fixed-point operations,
in practice, fixed-point and integer code often mix. Therefore, to
enable interoperability between fixed-point and integer Halide code,
FPIR is implemented as an extension to Halide’s existing integer IR.
Note that while we implement FPIR within the Halide compiler, we
believe that this set of intrinsics could (and should) be used for any
compiler that aims to target fixed-point instructions, such as LLVM.
See §7 for a discussion of LLVM’s existing fixed-point operators.

3.1 Design

In this section, we highlight three key design objectives that shape
FPIR, and provide concrete examples to justify our language design.

3.1.1 Portable. Programmers should be able to program in a close-
to-assembly but portable language that offers reliable performance.
As a result, FPIR unifies instruction classes across architectures
by providing portable instructions that implement common fixed-
point idioms. For example, FPIR exposes non-rounding averaging
via halving_add, which directly maps to ARM’s uhadd and shadd
instructions, HVX’s vavg* instructions, and RISC-V’s vaadd and
vaaddu instructions. If a backend lacks support for a particular FPIR
instruction, Pitchfork is still able to offer portable performance
for these instructions by providing the most efficient emulation
available. For example, x86, WebAssembly, and PowerPC do not
support halving_add, and therefore share Pitchfork’s fast non-
widening implementation of this instruction [17].

A portable fixed-point IR also decreases the cognitive load on the
compiler writers and reduces the size of the compiler. For example,
if there are 𝑘 ways for a programmer to write rounding_halving_-
add and 𝑛 backends that implement rounding_halving_add, with-
out rounding_halving_add in the IR itself, a compiler requires
𝑘 ∗𝑛 rules to map from primitive integer IR to backend instructions.
Instead, FPIR requires only 𝑘 + 𝑛 + 1 rules to be written: 𝑘 patterns
that map integer arithmetic to rounding_halving_add, 𝑛 map-
pings from rounding_halving_add to the target instructions, and
one efficient lowering for targets that don’t support this operation.

Note that this paper evaluates the FPIR x86, ARM, and HVX
backends; subsequently, developers have adopted FPIR for all of
Halide’s CPU backends, includingWebAssembly, PowerPC, XTensa,
and RISC-V. See Section §8 for details.

3.1.2 Curated. FPIR is a useful and minimal set of fixed-point
operations. We aim to be judicious about which instructions to
include in FPIR to prevent users from accidentally writing buggy



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Root et al.

FPIR Instruction Semantics

extending_add(x, y) x * widen(y) /* x must have double the bits of y */
extending_sub(x, y) x - widen(y) /* x must have double the bits of y */
extending_mul(x, y) x * widen(y) /* x must have double the bits of y */
widening_add(x, y) widen(x) + widen(y)
widening_sub(x, y) widen(x) - widen(y) /* x and y are cast to the wider signed type */
widening_mul(x, y) widen(x) * widen(y) /* x and y may have different signedness */
widening_shl(x, y) widen(x) « widen(y)
widening_shr(x, y) widen(x) » widen(y)
abs(x) select(x > 0, x, -x) /* The output is always unsigned */
absd(x, y) select(x > y, x - y, y - x) /* The output is always unsigned */
saturating_cast<t>(x) cast<t>(min(max(x, t.min()), t.max()))
saturating_narrow(x) saturating_cast<type(x).narrow()>(x) /* This is just shorthand that is useful in later semantic definitions */
saturating_add(x, y) saturating_narrow(widening_add(x, y))
saturating_sub(x, y) saturating_cast<type(x)>(widening_sub(x, y))
halving_add(x, y) narrow(widening_add(x, y) / 2)
halving_sub(x, y) narrow((widen(x) - widen(y)) / 2) /* Widening preserves signedness */
rounding_halving_add(x, y) narrow((widening_add(x, y) + 1) / 2)
rounding_shl(x, y) saturating_narrow(widening_add(x, select(y < 0, 1 » (y + 1), 0)) « y)
rounding_shr(x, y) saturating_narrow(widening_add(x, select(y < 0, 1 « (y + 1), 0)) » y)
mul_shr(x, y, z) saturating_narrow(widening_mul(x, y) » widen(z))
rounding_mul_shr(x, y, z) saturating_narrow(rounding_shr(widening_mul(x, y), widen(z)))

Table 1: Semantics of FPIR instructions, designed to unify common fixed-point idioms across multiple ISAs.

code. This means not including superfluous instructions such as
saturating_halving_add (equivalent to halving_add, as this op-
eration cannot overflow), which would be generated if the set of
instructions were a Cartesian product of modes and operations.
Likewise, FPIR purposefully excludes instructions with dubious
semantics that are likely to be used in a bug-prone way, such as
rounding_halving_sub, which has surprising overflow behavior
at the signed extremes. A clean and minimal set also reduces the
cognitive load on both programmers and compiler writers, by re-
ducing the number of instructions either programmer needs to
consider. Further, this property enables synthesis by reducing the
branching factor of the search space of possible programs.

3.1.3 Expressive. The language should allow programmers, com-
piler writers, and synthesizers to write short and readable, yet
powerful, expressions. For example, to write a non-rounding av-
eraging instruction in a C-like language, the user would need to
write narrow((widen(x) + widen(y)) » 1), while a user of FPIR
can simply write halving_add(x, y). The widening is never per-
formed when the instruction selection system targets ARM (uhadd
and shadd) or HVX (vavg*)4. Likewise, compiler writers (and syn-
thesizers) should be able to write short patterns in FPIR that map to
complex instructions. This property also improves the tractability
of synthesis by reducing the necessary depth of the search tree of
programs.

3.2 Lifting to FPIR

Pitchfork lifts Halide IR expressions to FPIR using a rule-based
term-rewriting system. The lifting TRS traverses the expression tree
bottom up, greedily applying a set of ordered rules to fuse multiple
operations (both Halide IR operations and FPIR instructions) into a
cheaper expression that incorporates at least one FPIR instruction.
The lifting TRS repeats this process until the expression converges
to a fixed point. Convergence is guaranteed by requiring that each
rule strictly reduces a target-agnostic cost, described below. Rules

4As noted in §3.1.1, halving_add does not need widened intermediates on any back-
end [17].

that could match on the same input are also ordered using this
cost, with the lower-cost output preferred. The lifting TRS was
implemented using approximately 50 hand-written rules, and aug-
mented with a further 25 synthesized rules, which we discuss later
in §4. Figure 4 shows a handful of lifting rules required to lift the
expression in Figure 2b.

Pitchfork’s cost model is a lexicographic order, which first
sums the bit-widths of the inputs to each instruction. This favors
fewer, narrower-bit-width instructions. Ties are resolved using an
ordering over operations designed to capture their average cost on
real targets. For example, rounding_halving_add for u8 is slightly
lower cost than halving_add, because while ARM and HVX sup-
port both, x86 only supports the former.

3.3 Lowering to Target ISA

The lowering of expressions from FPIR to the target ISA is imple-
mented using several target-specific term-rewriting systems. As
Halide is built on top of LLVM, the output of the lowering process
is not device-specific assembly code but rather LLVM IR. With
Pitchfork disabled, Halide lowers to target-agnostic LLVM IR and
lets LLVM select the correct device-specific instructions. In order to
punch a hole through this and perform its own instruction selection,
Pitchfork instead emits LLVM’s device-specific intrinsics, a set
of functions that correspond directly to instructions available in
the target ISAs. For some instructions LLVM does not provide an
intrinsic, and instead relies on device-specific pattern-matching.
For these, we emit precisely the pattern that LLVM expects for
that instruction, using LLVM’s unit tests as a guide. If all else fails,
we emit inline assembly, though that was not necessary for the
instructions used in this work.

Lowering rules are designed using target-specific cost models
provided by processor documentation [23, 29, 41] to maximize
throughput. We discuss the five main classes of lowering translation
rules below:



Fast Instruction Selection for Fast Digital Signal Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

// Syntax guide:-
// • Rule format: before -> after [predicate]
// • Wildcards are suffixed with their types,
// i.e. x_u8 is a vector of uint8s.
// • c0 is a wildcard that matches only to constants
u16(x_u8) * c0
-> widening_shl(x_u8, log2(c0)) [is_pow2(c0)]

u16(x_u8) + y_u16
-> extending_add(y_u16, x_u8)

extending_add(extending_add(x_u16, y_u8), z_u8)
-> widening_add(y_u8, z_u8) + x_u16

u8(min(x_u16, 255))
-> saturating_cast<u8>(x_u16)

Figure 4: Examples of rules triggered in lifting Sobel’s Fig-

ure 2b to Figure 2c. Note that many of these rules are poly-

morphic in nature, but we present them with concrete types

for illustrative purposes.

Direct mappings. These are one-to-one translations from FPIR to
concrete target instructions. In the Sobel example, the widening_-
add is directly compiled to a ARM’s uaddl instruction, and absd is
directly compiled to the corresponding unsigned absolute-difference
instructions on ARM (uabd) and HVX (vabsdiff).

Fused mappings. These rules map combinations of FPIR instruc-
tions to a single equivalent target instruction. For example, an
addition with a widening_shl can use ARM’s widening multiply-
accumulate instruction. This pattern is triggered when compiling
the Sobel example on ARM.

x_u16 + widening_shl(y_u8, c0)
-> umlal(x_u16, y_u8, (1 << c0))

Compound instructions. Not all backends support all instructions in
FPIR. For these cases, we provide efficient lowering from the FPIR
instruction to multiple target instructions. We give one such exam-
ple below, which implements a fast unsigned absd implementation
on x86 (due to [17]), and is triggered when compiling the Sobel
example on x86.

absd(x_u16, y_u16)
-> vpor(vpsubusw(x_u16, y_u16),

vpsubusw(y_u16, x_u16))

Predicated Rules. Pitchfork supports predicated lowering rules
that compile to specific instructions if facts can be proven at compile
time. We offer two such rules below:

HVX:
sat_cast<u8>(x_u16) -> vsat(x_u16)
[upper_bounded(x_u16, INT16_MAX)]

x86:
sat_cast<u8>(x_u16) -> vpackuswb(x_u16)
[upper_bounded(x_u16, INT16_MAX)]

While some predicate checks are simple, the most powerful
that Pitchfork offers are bounds-related queries, as shown above.
For these queries, we use interval analysis, and for performance
reasons, a simple expression cache for bounds queries. This is only
a small modification to the existing bounds inference engine in
Halide [42], as we only needed to add support for bounds queries
on FPIR instructions. These rules allow Pitchfork to perform
better compilation of the saturating cast performed in the Sobel
example on x86 and HVX.

Specific Constants. Some rules apply to usages of FPIR instructions
with specific constants. For example, a particular shift value for a
mul_shr instruction maps to the vpmulhw instruction on x86:

mul_shift_right(x_i16, y_i16, 16)
-> vpmulhw(x_i16, y_i16)

4 SYNTHESIZING TERM-REWRITING RULES

In this section, we discuss how Pitchfork synthesizes term-rewriting
rules for both lifting and lowering TRSs. Pitchfork’s offline mod-
ules are implemented in Rosette [47], a solver-aided programming
language that offers rich libraries for constructing and solving both
synthesis and verification queries. We use Z3 [16] as the underlying
solver.

The space of possible lifting and lowering rules is large. We aim
to only include rules that may trigger on real code - this is why we
do not use randomly-generated expressions, and instead choose a
data-driven approach.

4.1 Synthesizing Lifting Rewrite Pairs

We follow a similar algorithm to those used in prior works for
synthesizing term-rewriting systems [27, 38]. Given a set of fixed-
point expressions in Halide IR, Pitchfork enumerates all sub-
expressions of size up to 10 IR nodes to generate the left-hand-
sides of possible lifting rules. We keep left-hand-sides small in
order to generate less-specific rules that might be more broadly
applicable, and to keep synthesis manageable. To generate the right-
hand-side of a lifting rule, Pitchfork uses syntax-guided program
synthesis (SyGuS) [6] to lift the sub-expressions into FPIR, guided
by the target-agnostic cost model described in §3.2. This required
implementing an interpreter for Halide IR and FPIR in Rosette.
Left-hand-sides that successfully lift to cheaper right-hand-sides
are added to the rule-set that Pitchfork will try to generalize.
Generated lifting rules are ordered using the cost model.

We give a small example of a synthesized lifting rule from the
add benchmark below, but note that this is before generalization.
We discuss generalization further in §4.3.

i16(x_u8) << 6
-> reinterpret(widening_shl(x_u8, u8(6)))

The original hand-written lifting system failed to include a rule
that lifts a signed widening shift left on an unsigned variable into a
reinterpret of an unsigned widening_shl instruction. While the
hand-written lifting system contained a version of this rule where
the widen cast is u8 -> u16, the signed case was missed. Rules such
as this are difficult for human compiler engineers to enumerate.

4.2 Generating Lowering Rewrite Pairs

Pitchfork’s system for generating lowering rules is dependent on
an instruction selection oracle. We use Rake [4], which has back-
ends for both ARM and HVX - we do not currently automatically
generate lowering rules for x86. This is due to the small number
of interesting fused operations on x86. Future work could gener-
ate rules using synthesis-based x86 instruction selectors such as
STOKE [45].

Using the same set of fixed-point expressions in §4.1, Pitchfork
generates the left-hand-sides of lowering rules by using the lifting
system to lift a full example expression into FPIR and enumerating
small sub-expressions of the lifted expression, again up to a limit of



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Root et al.

10 IR nodes. Optimal right-hand-sides for these rules are provided
by our oracle – Rake. Lowering rules are ordered using Rake’s
target-specific cost model.

We give an example of a synthesized lowering rule from our
motivating example below, which corresponds to (a) in Figure 3.
Again, note that this rule is before generalization.

x_u16 + widening_shl(y_u8, 1)
-> umlal x_u16 y_u8 2

The hand-written lowering system for ARM produced a widen-
ing shift left ushll followed by a vector add, and this is also what
LLVM alone produces. However, it is faster to use ARM’s fused
widening multiply-add instruction, umlal for this particular com-
putation.

4.3 Generalizing Rewrite Pairs to Rules

We generalize lifting and lowering rules using a set of techniques
described below. Note that these are only generalization attempts –
Pitchfork verifies the attempt at generalization to confirm that
the generalized rule is still correct.
(1) Replace all instances of a constant with a symbolic constant.
(2) Require one constant to be the two to the power of another.
(3) Require safe-reinterpretations for a variable, i.e. when a uint16

can be safely reinterpreted as a int16.
(4) Safe truncation or saturation. Multiple processors implement

only saturating or only truncating versions of narrowing op-
erations. In some cases, a saturating variant of an instruction
can be used for a truncating computation if Pitchfork can
prove that the saturation won’t trigger, and vice versa.

For bounds on symbolic constants, we perform a simple binary
search on the space of possible integer values for that constant’s
type.

This small set of techniques is enough to generalize most rules.
We give the generalized versions of the lifting and lowering exam-
ples used in §4.1 and §4.2 below.

i16(x_u8x) << c0
-> reinterpret(widening_shl(x_u8x, u8(c0)))
if (0 < c0 < 256)

This generalized lifting rule requires a predicate that constrains
the range of possible constant-values that the rule is correct for,
found via the approach described above.

x_u16x + widening_shl(y_u8x, c0)
-> umlal x_u16x y_u8x (1 << c0)

This generalized lowering rule requires no predicate, but creates
a relationship between symbolic constants in the left-hand-side and
the right-hand-side of the rule.

5 EVALUATION

We evaluate Pitchfork on the set of Rake [4] benchmarks with
fixed-point computation5. These benchmarks span quantized ma-
chine learning, computational photography, image processing, and
computer vision workloads, and are all written as portable Halide
code.

We do not alter the existing Halide schedules found in the im-
plementation, and only change the instruction selection algorithm.
All benchmarks were run with a single thread. Benchmarks for

516 of Rake’s 21 benchmarks perform fixed-point computation.

ARM Neon were compiled and run on an Apple M1 Pro (3.2 GHz,
8 cores) with 16 GB of RAM. Benchmarks for x86 target AVX2 in-
structions and were compiled and run on an Intel Xeon Platinum
8275CL CPU @ 3.0 GHz running Ubuntu 20.04.4 with 96 cores
and 192 GB of RAM. Hexagon HVX runtime numbers were com-
puted using Qualcomm’s cycle-accurate Hexagon Simulator v8.3.07
without cache-modeling enabled (to simulate a compute-limited
system). We use mainline LLVM as of October 12, 20226. For the
comparison against Rake, we use the most recent version made
publicly-available by the authors7.

Due to the limited nature of open-source fixed-point benchmarks,
a full train-test-validate benchmark partition is not possible. In-
stead, we perform cross-validation via a leave-one-out approach.
The performance numbers reported are produced via compiling
each benchmark without the synthesized rules generated from that
benchmark’s expressions.

5.1 Runtime Evaluation

Compared to using LLVM alone for instruction selection, Pitch-
fork achieves geometric mean speedups of 1.31× on x86 AVX2
(maximum 3.40×), 1.82× on ARM Neon (maximum 8.33×), and
2.44× on Hexagon HVX (maximum 5.76×), as shown in Figure 5.
For most benchmarks, Pitchforkmatches the performance of Rake,
while in a few cases Pitchfork produces code that exceeds the
performance obtained by Rake.

On ARM, Pitchfork obtains performance on average 2% and
at most 9% slower than Rake. For HVX, Pitchfork is on average
13% and at most 50% (on matmul) slower. On the HVX platform,
the impact of Rake’s optimization of data swizzling operations has
a large impact; Pitchfork does not optimize swizzles, as Pitch-
fork’s design is focused on optimizing fixed-point computation
patterns. We discuss this limitation further in §6.

There are three benchmarks (depthwise_conv, matmul, and mul)
that use 64-bit types when expressed using primitive integer op-
erations, which HVX does not support and LLVM fails to compile.
For the LLVM evaluation of these three benchmarks, we use Pitch-
fork’s lowering of rounding_mul_shr that stays within 32-bit
arithmetic, intended to be used only for x86, as ARM and HVX con-
tain instructions for this particular usage of rounding_mul_shr8.
This implementation is only used to ensure that LLVM can compile
all benchmarks for comparison purposes, but note that this means
that Pitchfork can compile programs that LLVM alone cannot.

We now discuss a some of the optimizations that Pitchfork
achieves through its combination of hand-written and synthesized
rewrite rules.

5.1.1 Fused multiply-add instructions. These fused optimizations
fall into two sub-categories: direct fused multiply-adds (e.g. ARM’s
umlal) and dot-product instructions (e.g. ARM’s udot, HVX’s vrmpy,
and x86’s vpmaddwd). Many benchmarksmake heavy use of patterns
that can take advantage of each of these instructions, including add,
mul, matmul, sobel3x3, and the gaussian benchmarks. For many of
these benchmarks, LLVM either fails entirely to generate the fused
instructions or fails to properly utilize dot-product instructions.

6Commit c7dd7f20b099d98c1941240e5c8586290dd53182.
7https://github.com/uwplse/rake/tree/hvx-arm-x86-artifact
8This is used for signed 32-bit fixed-point multiplication within [−1, 1].



Fast Instruction Selection for Fast Digital Signal Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

add
mul

average pool

fully
connected

conv3x3 a16

conv3x3 a32

depthwise
conv

l2norm

softm
ax

matm
ul

camera
pipe

blur3x3

gaussi
an3x3

gaussi
an5x5

gaussi
an7x7

sobel3x3

0

2

4

6

8

10

S
p

ee
d

u
p

o
ve

r
L

LV
M

ARM

HVX

x86

Rake ARM

Rake HVX

Figure 5: Runtime speedups over LLVM instruction selection. Pitchfork achieves geometric mean speedups of 1.31× for x86,

1.82× for ARM, and 2.44× for Hexagon HVX, with a maximum speedup of 8.33×. For most benchmarks, Pitchfork matches the

performance of Rake at a fraction of the compile time. (Rake does not currently support x86 compilation.)

5.1.2 Saturating and rounding instructions. All of the quantized ML
benchmarks perform saturating and rounding operations, which
LLVM generally fails to produce9. Image processing benchmarks
like camera_pipe and gaussian3x3 feature rounding averaging and
rounding shifts respectively, for which Pitchfork produces the
correct target instructions but LLVM does not.

5.1.3 Direct mappings. As discussed in §3.3, many FPIR instruc-
tions have direct mappings to concrete target instructions. This
includes absd (used in camera_pipe and sobel3x3), rounding_mul_-
shr (used in mul and depthwise_conv, and lifted to in matmul),
and many others. These are mapped to their corresponding tar-
get instructions, but LLVM generally fails to match their semantic
definitions entirely.

5.1.4 Compound instructions. While ARM and HVX implement
most of the instructions defined in FPIR, x86 implements far fewer.
Thus, Pitchfork lowers to optimized implementations of many
operations on x86, as discussed in §3.3. These have particular impact
on several benchmarks, including sobel3x3 and matmul. Efficient
implementations of these instructions are particularly relevant for
extending Pitchfork to other backends that do not have the large
number of fixed-point instructions that ARM and HVX support,
such as WebAssembly.

5.2 Compilation Speed

Figure 6 shows compilation time speedup over LLVM alone for
our three backends. Despite existing on top of LLVM, Pitchfork
compiles most benchmarks in less time, due to generating less
LLVM IR. This reduces time spent in LLVM optimization passes,
which more than makes up for the time spent in Pitchfork’s lifting
and lowering. The largest speedup is compiling softmax, which
requires a large amount of LLVM IR to express using primitive

9With the exception of cases where the program explicitly uses saturating_add,
which is lowered to llvm.(u|s)add.sat.

add
mul

average pool

fully
connected

conv3x3 a16

conv3x3 a32

depthwise
conv

l2norm

softm
ax

matm
ul

camera
pipe

blur3x3

gaussi
an3x3

gaussi
an5x5

gaussi
an7x7

sobel3x3

0.0

0.5

1.0

1.5

2.0

2.5

C
o

m
p

il
a

ti
o

n
sp

ee
d

u
p

o
ve

r
L

LV
M

ARM

HVX

x86

Figure 6: Compile-time speed-up over LLVM alone for the

three backends. Pitchfork improved runtime performance

without compile-time cost – compile times are in fact slightly

improved in most cases by passing less code to the down-

stream LLVM compiler.

integer operations, but is more compact in FPIR. Pitchfork and
LLVM are both orders of magnitude faster than compiling via Rake.

5.3 Ablation: Impact of Synthesized Rules

In order to empirically measure improvements due to generating
rewrite rules for Pitchfork, we perform two ablation studies (for
ARM and HVX) where we compare the performance of Pitchfork
to a version of Pitchfork with only hand-written rules. Figure 7
shows the speedups due to learned rules, showing that synthesized
rules increase performance by up to 4.99× over handwritten rules
alone.



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Root et al.

add
mul

average pool

fully
connected

conv3x3 a16

conv3x3 a32

depthwise
conv

l2norm

softm
ax

matm
ul

camera
pipe

blur3x3

gaussi
an3x3

gaussi
an5x5

gaussi
an7x7

sobel3x3

0.0

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

o
ve

r
P

it
ch

fo
rk

sy
n

th

4.99

ARM

HVX

Figure 7: Speed-up over hand-written rules. Adding synthe-

sized rules results in geomean speed-ups of 1.09× onARMand

1.14× on HVX, with up to a 4.99× speedup for average_pool
on HVX.

5.3.1 Synthesized rules for ARM. Many of the synthesized lowering
rules on ARM correspond to missed patterns for fused multiply-
accumulate instructions. These correspond to usages of umlal on
add, mul, and sobel3x3, and usages of udot for matmul and gauss-
ian7x7, where convolution can use ARM’s dot-product instruction.
Pitchfork also generates some shift-right-narrow patterns that use
bounds-inference-derived predicates for more efficient instruction
selection on gaussian3x3.

5.3.2 Synthesized rules for HVX. Pitchfork generates all of the
missed optimization patterns that Rake finds for HVX [4]. This cor-
responds to missing fused multiply-accumulate instructions for add,
average_pool, and sobel3x3, as well as fused saturate-shift instruc-
tions on camera_pipe and gaussian3x3. Note that on one benchmark,
gaussian7x7, Pitchfork performs worse when including synthe-
sized rules. This is due to a synthesized lifting rule that re-orders
a series of widening additions and multiplications in a way that
interacts poorly with HVX’s challenging swizzling patterns; the
re-ordered computation requires an additional shuffle operation.

6 LIMITATIONS AND FUTUREWORK

An important design goal of Pitchfork is efficient compilation –
the majority of Pitchfork’s limitations are direct results of priori-
tizing this goal.

Local Optimizations. Term-rewriting systems cannot perform global
optimizations, which can further improve performance. This can
be seen when comparing the performance of Pitchfork and Rake
on the gaussian7x7 benchmark for ARM Neon. Rake performs a
global computation reordering that Pitchfork does not. Pitch-
fork would require impractically-large rules to perform the same
re-ordering.

Data Swizzling. As noted in §5.3.2, Hexagon performance is highly
dependent on swizzling patterns. Future work could co-optimize

data computation patterns and data swizzling, though this is very
Hexagon-specific.

Predicates. Pitchfork could support more complicated predicates,
or use more powerful theorem proving systems to prove compile-
time facts, at the cost of compile-time. For example, Pitchfork’s
bounds inference fails to prove the same bound that Rake proves
on an expression for the gaussian3x3 benchmark on Hexagon – this
leads to worse code generation. Additionally, Rake is able to prove
facts about index relationships that allow it to generate sliding
window instructions (i.e. vtmpy on sobel3x3), but Pitchfork does
not currently support this.

x86 Offline Optimization. We only implement the generation of
lowering rules for Pitchfork’s ARM and HVX backends via Rake,
which does not offer an x86 backend. We leave offline generation
of x86 lowering rules as future work, but note that this backend
lacks the number of interesting fused instructions that ARM and
HVX offer.

Verified Lowering Systems. As noted in §2.4, we verify the rules that
translate primitive integer arithmetic into FPIR. We could feasibly
verify the rules that lower into target instructions, but this requires
formal models of every target instruction. We leave this as future
work.

Implementation in LLVM. Pitchfork was developed as part of the
Halide compiler for ease of implementation. However, we believe
our work makes a case for how fixed-point instruction selection
should be done inside LLVM, and what fixed-point intrinsics LLVM
should expose in its IR.

7 RELATEDWORK

Fixed-Point Intermediate Representations. Despite attempts to stan-
dardize a set of portable fixed-point operators (e.g. [33]), to our
knowledge the vast majority of fixed-point code in production is
still expressed as primitive integer arithmetic, or non-portable in-
trinsics or assembly (e.g. [28], [18]). LLVM exposes a handful of
generic fixed-point multiplication intrinsics [19]. However these
have deliberately unspecified rounding behavior, so they are not
useful for writing portable code and cannot be lifted to exactly from
integer code.

Vectorization. There are decades of work on various vectorization
methods [5, 8, 11, 12, 25, 30, 34, 39]. This work is largely comple-
mentary to our work as it generates vectorized IR, while our system
takes already-vectorized IR and chooses concrete target instructions
to perform computation.

Program Synthesis. Program synthesis is the task of constructing
a program that satisfies a high-level specification [20]. There is
extensive prior work in using online program synthesis for domains
such as optimizing small tensor kernels [15], auto-vectorization
of general-purpose loops [9], and optimizing distributed memory
kernels [52]. These techniques do not perform offline synthesis in
order to improve online performance, as our system does.

Verified Lifting. Prior work in verified lifting has proven successful
at lifting legacy code into new DSLs and frameworks [2, 13, 24],
including lifting legacy image processing code to Halide [3]. Our



Fast Instruction Selection for Fast Digital Signal Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

lifting system can be seen as a limited verified lifter, using offline
instead of online synthesis.

Vectorization and Instruction Selection via Synthesis. Diospyros [48]
is an e-graph based auto-vectorizer for synthesizing efficient linear
algebra kernels for DSP architectures. It does not perform instruc-
tion selection, relying on a vendor-supplied compiler toolchain to
lower vectorized expressions. Like auto-vectorization in general,
this is complementary to our work in choosing optimal instructions
for already-vectorized IR. Rake [4] is a synthesis-based compiler
for instruction selection. We compare to Rake in §5, and it is our
oracle for lowering-rule synthesis §4.2.

Term-Rewriting Systems. Recent work in building term-rewriting
systems leverages synthesized rules for numerical simplifications [38]
and optimization of fully-homomorphic encryption circuits [27].
These systems use offline program synthesis to learn a TRS, as we
do. However, each of these systems learns a single TRS operating
within a single IR, whereas we use two TRSs translating between
IRs.

Buchwald et al. [10] proposed synthesizing a term-rewriting
system for instruction selection, but only attempts to do direct
translation to x86 for simple integer IR, and does not scale to the
size of rules that Pitchfork enables.

Likewise, the Alive project [31, 32] verifies compiler optimiza-
tions, Alive-Infer [35] learns preconditions for optimization rules,
and Souper [44] is a super-optimizing compiler for LLVM IR. Each
of these work as rewrites within LLVM IR, and do not perform
instruction selection.

A large amount of recent work [48, 51, 53, 54] uses e-graphs for
term optimization, and for learning inference rules themselves [37].
Our investigation into these techniques showed that equality satura-
tion is not well suited for translating between languages (necessary
for both our lifting and lowering phases), does not efficiently sup-
port constraints or rule predicates (e.g. enforcing type-matching of
operands), and is not efficient enough for online use.

8 DISCUSSION

Pitchfork is open-source10, and Halide now uses FPIR (with hand-
written TRSs) for all of its production CPU and DSP backends,
including other x86 variants (SSE2, SSE4.1, and AVX512), 32-bit
ARM, PowerPC, WebAssembly, XTensa, and the experimental RISC-
V backend. Many of the synthesized rules for ARM and HVX have
been merged into the Halide compiler. While these additional back-
ends are not contributions of this paper, they illustrate FPIR’s gen-
erality and success as a portable fixed-point language.

8.1 Common Threads

Usage of FPIR for instruction selection was straightforward for
most of the ISAs listed above. Supporting WebAssembly, PowerPC,
x86 variants, and ARM32 required no extensions to FPIR. Web-
Assembly SIMD was specifically designed to take advantage of
common hardware capabilities [50], and therefore is similar to the
x86 and ARM ISAs. PowerPC is similar to x86, and x86 variants do
not introduce new fixed-point operations beyond the instruction
classes that FPIR supports. The same is true for ARM32.
10https://github.com/halide/Halide/tree/rootjalex/trs-codegen

XTensa is similar to both ARM and HVX; however, it did reveal
a shared instruction class between XTensa and ARM that prompted
adding a new instruction to FPIR. We discuss this extension below,
in §8.4. Lastly, the RISC-V vector extensions, while mostly covered
by the existing design of FPIR, does support some fixed-point in-
structions that are not easily expressed in FPIR, which we discuss
in §8.2.

While FPIR encapsulates most fixed-point instruction sets, it may
need to evolve as hardware backends evolve. We believe (based on
the work required to incorporate FPIR into the Halide compiler)
that this work will be minimal.

8.2 Rounding Modes

The RISC-V Vector Extensions support a number of rounding modes
for averaging and shifting instructions: round-up, round-down,
round-towards-even, and round-towards-odd [43]. FPIR exposes
only the first two variants for shifts and averaging instructions, as
these variants are supported by multiple hardware targets11. These
additional modes are rarely used in practice in portable code [1]
because no other architectures support them and they are expensive
to emulate, conflicting with FPIR’s portability goal. We note in
§6 that improving the performance of emulated instructions is
interesting future work, which could enable supporting these new
rounding modes with portable performance.

As discussed in §3.1.2, FPIR purposefully does not include round
ing_halving_sub, the round-up subtracting averaging instruction.
RISC-V does support this instruction; it has been excluded from
FPIR as it conflicts with our design goals by offering an instruction
with dubious semantics that only one ISA supports12. However,
as we discuss in §8.4, FPIR can be easily extended to support new
instructions, so it could be added if needed.

8.3 Targeting Relaxed Instructions

The WebAssembly Relaxed SIMD proposal [49] includes three new
fixed-point instructions with relaxed determinism related to over-
flow semantics. These instructions can be easily matched using
Pitchfork’s pattern-matching in conjunction with its bounds in-
ference machinery to prove that the original code cannot overflow,
therefore allowing deterministic use of the relaxed instruction. For
example, the i16x8.q15mulr_s instruction can be matched to a
rounding_mul_shr(x_i16, y_i16, 15) pattern if either x_i16
or y_i16 cannot be INT16MIN. This shows that Pitchfork’s ma-
chinery can be used for ensuring determinism, even if instructions
may include non-deterministic behavior with certain input ranges.

8.4 Extending Pitchfork

We illustrate the extensibility of Pitchfork by showing how an
instruction can be added to FPIR, and separately to Pitchfork’s
synthesis system. As mentioned above, adding the XTensa backend

11Note that while all targets support round-up averaging and round-down shifting,
only XTensa, RISC-V, ARM, and HVX support round-down averaging and round-up
shifting. Targets that do not support round-down and round-up shifts use Pitchfork’s
efficient lowering [17].
1232-bit ARM documentation [7] pre-armv8 shows a similar instruction but does
not define overflow semantics, and no compiler that we are aware of generates this
instruction.

https://github.com/halide/Halide/tree/rootjalex/trs-codegen


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Root et al.

to Halide revealed a shared instruction13 class with the following
semantics:

saturating_shl<T>(x, y)
= saturating_cast<T>(widening_shl(x, y))

Extending FPIR is straightforward: a one-line definition of sat
urating_shl is added, one line of code is added to the lifter to
pattern match the above pattern, nine lines are added to the ARM
backend to map saturating_shl to its variants, and four lines
to the XTensa backend. Lastly, one line is added to the lowering
system that handles FPIR instructions on backends that do not
directly support them. Note that a more efficient lowering may
exist, but existing fixed-point bit-trick resources do not provide
efficient lowering for this pattern. As noted in §6, super-optimizing
the emulation of unsupported instructions is interesting future
work.

Extending Pitchfork’s synthesis system to support a new in-
struction requires only a few lines of Rosette code to encode the
semantics of the instruction, and a log in the synthesis engine’s list
of available instructions.

9 CONCLUSION

We present Pitchfork, an instruction selector for fixed-point sig-
nal processing code written in Halide. Pitchfork is constructed
around our intermediate representation FPIR, which captures the
idioms of fixed-point computation in a target-agnostic way. Given
portable fixed-point code written using primitive integer operations
or FPIR directly, our system achieves the runtime performance of
recent research compilers with the compile-time performance of
production compilers.

ACKNOWLEDGMENTS

We thank the Halide contributors who have improved instruction
selection over the years, especially Volodymyr Kysenko, Zalman
Stern, Steven Johnson, Pranav Bhandarkar, and Ankit Aggarwal.
We also thankManya Bansal, Jacob Kahn, Fredrik Kjolstad, Amanda
Liu, KatherineMohr, KevinMu, Rohan Yadav, Bobby Yan, and David
Zhang, for their helpful feedback on drafts of this paper. Alexander
J. Root was supported by the NSF Graduate Research Fellowship,
and part of this work was done while he was an intern at Adobe
Research and a student at MIT. This work was supported by NSF
awards CCF-1723445, CCF-1846502, and funding from the SRC
JUMP ADA center.

REFERENCES

[1] Andrew Adams and Dillon Sharlet. 2022. Better Fixed-Point Filtering with
Averaging Trees. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 5, 3 (July 2022), 1–8. https://doi.org/10.1145/3543869

[2] Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically Leveraging
MapReduce Frameworks for Data-Intensive Applications. In Proceedings of the
2018 International Conference on Management of Data (Houston, TX, USA) (SIG-
MOD ’18). Association for ComputingMachinery, NewYork, NY, USA, 1205–1220.

[3] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib
Kamil. 2019. Automatically translating image processing libraries to halide. ACM
Transactions on Graphics 38 (11 2019), 1–13. https://doi.org/10.1145/3355089.
3356549

[4] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib Kamil, and
Alvin Cheung. 2022. Vector Instruction Selection for Digital Signal Processors
using Program Synthesis. In Proceedings of the 27th ACM International Conference

13ARM Neon’s sqshl, uqshl, and sqshlu, and XTensa’s IVP_SLSN* intrinsics.

on Architectural Support for Programming Languages and Operating Systems.
Association for Computing Machinery. https://doi.org/10.1145/3503222.3507714

[5] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FORTRAN
Programs to Vector Form. ACM Trans. Program. Lang. Syst. 9, 4 (oct 1987),
491–542. https://doi.org/10.1145/29873.29875

[6] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013.
1–17. https://doi.org/10.1109/FMCAD.2013.6679385

[7] ARM. [n.d.]. Learn the architecture - Neon programmers’ guide: D.3.13. VRHSUB.
Technical Report. ARM Developer. https://developer.arm.com/documentation/
den0018/a/NEON-Intrinsics-Reference/Arithmetic/VRHSUB

[8] Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. 2016. FlexVec: Auto-
Vectorization for Irregular Loops. SIGPLAN Not. 51, 6 (jun 2016), 697–710. https:
//doi.org/10.1145/2980983.2908111

[9] Gilles Barthe, JuanManuel Crespo, Sumit Gulwani, Cesar Kunz, andMarkMarron.
2013. From Relational Verification to SIMD Loop Synthesis. In Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Shenzhen, China) (PPoPP ’13). Association for Computing Machinery, New York,
NY, USA, 123–134. https://doi.org/10.1145/2442516.2442529

[10] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Synthesizing an
Instruction Selection Rule Library from Semantic Specifications. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO 2018). Association for Computing Machinery, New York, NY, USA,
300–313. https://doi.org/10.1145/3168821

[11] Yishen Chen, Charith Mendis, and Saman Amarasinghe. 2022. All You Need
is Superword-Level Parallelism: Systematic Control-Flow Vectorization with
SLP. In Proceedings of the 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (San Diego, CA, USA) (PLDI
2022). Association for Computing Machinery, New York, NY, USA, 301–315.
https://doi.org/10.1145/3519939.3523701

[12] Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. 2021.
VeGen: A Vectorizer Generator for SIMD and Beyond. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for
Computing Machinery, New York, NY, USA, 902–914. https://doi.org/10.1145/
3445814.3446692

[13] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
Database-Backed Applications with Query Synthesis. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery,
New York, NY, USA.

[14] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C. Koob, A.
Ingle, C. Tabony, and R. Maule. 2014. Hexagon DSP: An Architecture Optimized
for Mobile Multimedia and Communications. IEEE Micro 34, 02 (mar 2014), 34–43.
https://doi.org/10.1109/MM.2014.12

[15] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and Luis Ceze.
2020. Automatic Generation of High-Performance Quantized Machine Learning
Kernels. In Proceedings of the 18th ACM/IEEE International Symposium on Code
Generation and Optimization. ACM. https://doi.org/10.1145/3368826.3377912

[16] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[17] Henry Gordon Dietz. [n.d.]. The Aggregate Magic Algorithms. Technical Report.
University of Kentucky. http://aggregate.org/MAGIC/

[18] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. 2019. Fast Sparse
ConvNets. https://doi.org/10.48550/ARXIV.1911.09723

[19] LLVM Foundation. 2022. LLVM Fixed Point Arithmetic Intrinsics. https://llvm.
org/docs/LangRef.html. Accessed: 2022-10-18.

[20] S. Gulwani, O. Polozov, and R. Singh. 2017. Program Synthesis. Now Publishers.
https://books.google.com/books?id=mK5ctAEACAAJ

[21] Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T.
Barron, Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst Photography
for High Dynamic Range and Low-Light Imaging on Mobile Cameras. ACM
Trans. Graph. 35, 6, Article 192 (nov 2016), 12 pages. https://doi.org/10.1145/
2980179.2980254

[22] Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu,
Qiang Dai, William T. Freeman, and Frédo Durand. 2021. QuanTaichi: A Compiler
for Quantized Simulations. ACM Transactions on Graphics 40, 4 (aug 2021), 1–16.
https://doi.org/10.1145/3450626.3459671

[23] Intel. [n.d.]. Intel Intrinsics Guide. Technical Report. Intel. https://www.intel.
com/content/www/us/en/docs/intrinsics-guide/index.html

[24] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016.
Verified lifting of stencil computations. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, June 13-17, 2016. 711–726.

https://doi.org/10.1145/3543869
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3503222.3507714
https://doi.org/10.1145/29873.29875
https://doi.org/10.1109/FMCAD.2013.6679385
https://developer.arm.com/documentation/den0018/a/NEON-Intrinsics-Reference/Arithmetic/VRHSUB
https://developer.arm.com/documentation/den0018/a/NEON-Intrinsics-Reference/Arithmetic/VRHSUB
https://doi.org/10.1145/2980983.2908111
https://doi.org/10.1145/2980983.2908111
https://doi.org/10.1145/2442516.2442529
https://doi.org/10.1145/3168821
https://doi.org/10.1145/3519939.3523701
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1109/MM.2014.12
https://doi.org/10.1145/3368826.3377912
http://aggregate.org/MAGIC/
https://doi.org/10.48550/ARXIV.1911.09723
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://books.google.com/books?id=mK5ctAEACAAJ
https://doi.org/10.1145/2980179.2980254
https://doi.org/10.1145/2980179.2980254
https://doi.org/10.1145/3450626.3459671
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


Fast Instruction Selection for Fast Digital Signal Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[25] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. SIGPLAN Not. 35, 5 (may 2000),
145–156. https://doi.org/10.1145/358438.349320

[26] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society, USA, 75.
https://doi.org/10.1109/CGO.2004.1281665

[27] DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. 2020. Optimizing
Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. Association for Computing Machinery. https://doi.
org/10.1145/3385412.3385996

[28] libjpeg turbo. 2022. libjpeg-turbo. Technical Report. https://github.com/libjpeg-
turbo/libjpeg-turbo/tree/5446ff88d617b2d2768456d9be1a8c47c4606c92/simd

[29] ARM Limited. 2011. Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile. https://developer.arm.com/documentation/ddi0487/ga

[30] Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kandemir. 2012.
A Compiler Framework for Extracting Superword Level Parallelism. SIGPLAN
Not. 47, 6 (jun 2012), 347–358. https://doi.org/10.1145/2345156.2254106

[31] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: Bounded Translation Validation for LLVM. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 65–79. https://doi.org/10.1145/3453483.3454030

[32] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.
Provably Correct Peephole Optimizations with Alive. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York,
NY, USA, 22–32. https://doi.org/10.1145/2737924.2737965

[33] John McFarlane. 2018. Fixed-Point Real Numbers. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2018/p0037r5.html. Accessed: 2022-10-18.

[34] Charith Mendis and Saman Amarasinghe. 2018. GoSLP: Globally Optimized
Superword Level Parallelism Framework. Proc. ACM Program. Lang. 2, OOPSLA,
Article 110 (oct 2018), 28 pages. https://doi.org/10.1145/3276480

[35] David Menendez and Santosh Nagarakatte. 2017. Alive-Infer: Data-Driven Pre-
condition Inference for Peephole Optimizations in LLVM. SIGPLAN Not. 52, 6
(jun 2017), 49–63. https://doi.org/10.1145/3140587.3062372

[36] Millind Mittal, Alex Peleg, and Uri Weiser. 1997. MMX Technol-
ogy Architecture Overview. Intel Technology Journal Q3 (1997), 12.
http://developer.intel.com/technology/itj/q31997/articles/art_2.htm;http:
//developer.intel.com/technology/itj/q31997/pdf/archite.pdf

[37] Chandrakana Nandi, MaxWillsey, Amy Zhu, Yisu RemyWang, Brett Saiki, Adam
Anderson, Adriana Schulz, Dan Grossman, and Zachary Tatlock. 2021. Rewrite
Rule Inference Using Equality Saturation. Proc. ACM Program. Lang. 5, OOPSLA,
Article 119 (oct 2021), 28 pages. https://doi.org/10.1145/3485496

[38] Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib
Kamil. 2020. Verifying and Improving Halide’s Term Rewriting System with Pro-
gram Synthesis. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–28. https://doi.org/10.1145/3428234

[39] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-Vectorization of Interleaved
Data for SIMD. SIGPLAN Not. 41, 6 (jun 2006), 132–143. https://doi.org/10.1145/
1133255.1133997

[40] William K. Pratt. 2007. Digital Image Processing: PIKS Scientific Inside. Wiley-
Interscience, USA. https://doi.org/10.1002/0470097434

[41] Qualcomm Technologies 2018. Qualcomm Hexagon V66 HVX Programmer’s
Reference Manual (80-n2040-44 rev. b ed.). Qualcomm Technologies.

[42] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13).
Association for Computing Machinery, New York, NY, USA, 519–530. https:
//doi.org/10.1145/2491956.2462176

[43] RISC-V. [n.d.]. RISC-V "V" Vector Extension. Technical Report. RISC-
V. https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#v-vector-
extension-for-application-processors

[44] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian
Lup, Jubi Taneja, and John Regehr. 2017. Souper: A Synthesizing Superoptimizer.
https://doi.org/10.48550/ARXIV.1711.04422

[45] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stochastic ProgramOptimiza-
tion. Commun. ACM 59, 2 (Jan. 2016), 114–122. https://doi.org/10.1145/2863701

[46] ManuMathewThomas, Karthik Vaidyanathan, Gabor Liktor, andAngus G. Forbes.
2020. A Reduced-Precision Network for Image Reconstruction. ACMTrans. Graph.
39, 6, Article 231 (nov 2020), 12 pages. https://doi.org/10.1145/3414685.3417786

[47] Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages with
Rosette. In Proceedings of the 2013 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana,

USA) (Onward! 2013). Association for Computing Machinery, New York, NY, USA,
135–152. https://doi.org/10.1145/2509578.2509586

[48] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2021. Vectorization for Digital Signal Processors via Equality Saturation.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS 2021).
Association for Computing Machinery, New York, NY, USA, 874–886. https:
//doi.org/10.1145/3445814.3446707

[49] WebAssembly. [n.d.]. Relaxed SIMD proposal for WebAssembly. Technical Report.
WebAssembly. https://github.com/WebAssembly/relaxed-simd

[50] WebAssembly. [n.d.]. WebAssembly 128-bit packed SIMD Extension. Techni-
cal Report. WebAssembly. https://github.com/WebAssembly/simd/blob/main/
proposals/simd/SIMD.md

[51] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. Egg: Fast and Extensible Equality Saturation. Proc.
ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages. https://doi.org/10.
1145/3434304

[52] Zhilei Xu, Shoaib Kamil, and Armando Solar-Lezama. 2014. MSL: A Synthesis
Enabled Language for Distributed Implementations. In SC ’14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 311–322. https://doi.org/10.1109/SC.2014.31

[53] Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey,
Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation for Tensor Graph
Superoptimization. https://doi.org/10.48550/ARXIV.2101.01332

[54] Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock. 2022. Re-
lational E-Matching. Proc. ACM Program. Lang. 6, POPL, Article 35 (jan 2022),
22 pages. https://doi.org/10.1145/3498696

https://doi.org/10.1145/358438.349320
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://github.com/libjpeg-turbo/libjpeg-turbo/tree/5446ff88d617b2d2768456d9be1a8c47c4606c92/simd
https://github.com/libjpeg-turbo/libjpeg-turbo/tree/5446ff88d617b2d2768456d9be1a8c47c4606c92/simd
https://developer.arm.com/documentation/ddi0487/ga
https://doi.org/10.1145/2345156.2254106
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0037r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0037r5.html
https://doi.org/10.1145/3276480
https://doi.org/10.1145/3140587.3062372
http://developer.intel.com/technology/itj/q31997/articles/art_2.htm; http://developer.intel.com/technology/itj/q31997/pdf/archite.pdf
http://developer.intel.com/technology/itj/q31997/articles/art_2.htm; http://developer.intel.com/technology/itj/q31997/pdf/archite.pdf
https://doi.org/10.1145/3485496
https://doi.org/10.1145/3428234
https://doi.org/10.1145/1133255.1133997
https://doi.org/10.1145/1133255.1133997
https://doi.org/10.1002/0470097434
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#v-vector-extension-for-application-processors
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#v-vector-extension-for-application-processors
https://doi.org/10.48550/ARXIV.1711.04422
https://doi.org/10.1145/2863701
https://doi.org/10.1145/3414685.3417786
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://github.com/WebAssembly/relaxed-simd
https://github.com/WebAssembly/simd/blob/main/proposals/simd/SIMD.md
https://github.com/WebAssembly/simd/blob/main/proposals/simd/SIMD.md
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1109/SC.2014.31
https://doi.org/10.48550/ARXIV.2101.01332
https://doi.org/10.1145/3498696

	Abstract
	1 Introduction
	2 Overview
	2.1 Fixed-Point Considerations
	2.2 Motivating Example
	2.3 Instruction Selection in Pitchfork
	2.4 Synthesizing Rewrite Rules

	3 An IR for Fixed-Point Arithmetic
	3.1 Design
	3.2 Lifting to FPIR
	3.3 Lowering to Target ISA

	4 Synthesizing Term-Rewriting Rules
	4.1 Synthesizing Lifting Rewrite Pairs
	4.2 Generating Lowering Rewrite Pairs
	4.3 Generalizing Rewrite Pairs to Rules

	5 Evaluation
	5.1 Runtime Evaluation
	5.2 Compilation Speed
	5.3 Ablation: Impact of Synthesized Rules

	6 Limitations and Future Work
	7 Related Work
	8 Discussion
	8.1 Common Threads
	8.2 Rounding Modes
	8.3 Targeting Relaxed Instructions
	8.4 Extending Pitchfork

	9 Conclusion
	Acknowledgments
	References

